Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor
نویسندگان
چکیده
Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.
منابع مشابه
Physics of U.S. Surface Temperature Response to ENSO
To elucidate physical processes responsible for the response of U.S. surface temperatures to El Niño– Southern Oscillation (ENSO), the surface energy balance is diagnosed from observations, with emphasis on the role of clouds, water vapor, and land surface properties associated with snow cover and soil moisture. Results for the winter season (December–February) indicate that U.S. surface temper...
متن کاملAtmospheric Effects on the NDVI--Strategies for Its Removal
The compositing technique used to derive global vegetation index (NDVI) from the NOAA-AVHRR radiances, reduces the residual effect of water vapor and aerosol on the NDVI . The reduction in the atmospheric effect is shown using a comprehensive measured data set for desert conditions, and a simulation for grass with continental aerosol. A statistical analysis of the probability of occurrence of a...
متن کاملEstimation and Analysis of Precipitable Water Vapor Using GPS Data and Satellite Altimeter
Determination of water vapor in the atmosphere plays an important role in forecasting weather conditions and precipitation studies. For this reason, it is very important to study the tropospheric delay, especially the wet component, which is due to the presence of water vapor in the atmosphere. In this paper, the amount of water vapor was estimated by altimeter satellite radiometer and GPS data...
متن کاملAnalysis of temporal and spatial correlation between precipitable water vapor retrievals from AIRS satellite sensor and 29 synoptic station measurements in Iran
Precipitable Water Vapor (PWV) is one of the most important quantities in meteorology and climate studies. PWV in Earth's atmosphere can be measured by Sun-photometer, the Atmospheric Infrared Sounder (AIRS), and radiosonde from surface, atmosphere and space-based systems, respectively. In this paper, we use PWV measured by Sun-photometer located in Institute for Advanced Studies in Basic Scien...
متن کاملCalculating of Radiosonde Precipitable water using MODIS Satellite images in Goorganrood basin
Deficiency of atmospheric water vapor profile data is one of most important problems in the flood hazard researches for areas flooding such as Goorganrood basin, because of no radiosonde stations. With the aim of radiosonde data generation retrieved radiance MODIS data, after Geometric and radiometric corrections, on 21 and 8 august 2005 from MODIS-Level 1, In order to make spatial TPW maps of ...
متن کامل